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Minimal Solutions of Three-Term 
Recurrence Relations and Orthogonal Polynomials* 

By Walter Gautschi 

Abstract. We observe that the well-known recurrence relation p,,+ 1(z) = (z - a -pJz)- 
b,.p- 1(z) for orthogonal polynomials admits a "minimal solution" if z is outside the 
spectrum of the mass distribution ds(t) with respect to which the polynomials are orthogonal 
and if the moment problem for this distribution is determined. The minimal solution, indeed, 
is fn(z) = f p(t) ds(t)/(z - t), and can be computed accurately by means of the authors 
continued fraction algorithm. An application is made to special Gauss-type quadrature 
formulas. 

1. Introduction. Minimal solutions of three-term recurrence relations, and their 
computational implications, are discussed systematically in [7]. Effective algorithms 
for computing minimal solutions have been developed in [7], [16], [17] and continue 
to be the subject of further study (see, e.g., [14], [26], [5], [2], [24], [25], [3]). With 
these powerful algorithms at hand, it seems desirable to delineate large classes of 
recurrence relations for which the presence of minimal solutions can be ascertained 
and the minimal solution itself identified. Even more desirable is an understanding 
of the deeper reasons for the occurrence of minimal solutions, in terms of intrinsic 
features of the subject area in which they arise. 

Few attempts have been made along these lines. The work of Thacher [22], [23] 
on power series solution of linear differential equations with polynomial coeffi- 
cients may be considered a beginning, inasmuch as the presence of minimal 
solutions (of the recurrence relation satisfied by the expansion coefficients) is 
conjectured to be related in a specified way to the type of singularities in the 
differential equation. Here we wish to consider the recurrence relation 

(1.1) Yn+lI = (Z - an)Yn - bnYn,-I n = 1, 2, 3, . . ., bn > 0, 

associated with the moment sequence of a mass distribution ds(t) on the real line. 
We make the simple observation, apparently overlooked so far, that for any z 
outside the spectrum of ds(t) the recurrence relation (1.1) possesses a (readily 
identifiable) minimal solution whenever the moment problem for ds(t) is determined 
(Section 3). If the spectrum of ds(t) is bounded (i.e., there is zero mass outside some 
finite interval), then the moment problem is always determined; hence a minimal 
solution always exists. 
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Our observation opens up a large class of recurrence relations to which the 
algorithms mentioned above can be usefully applied. One such application (to 
special Gaussian quadrature rules) will be discussed in Section 4, and an ap- 
propriate algorithm in Section 5. 

In the case of the Jacobi distribution on [-1, 1], the existence of a minimal 
solution (when z 4 [-1, 11) can easily be infeffed from the asymptotic theory of 
difference equations [7, Theorem 2.31. This is no longer the case for distributions 
on infinite intervals, such as the generalized Laguerre, or Hermite, distribution. 

2. Orthogonal Polynomials and Associated Polynomials. Let ds(t) be a mass 
distribution on the finite or infinite interval [a, b] (i.e., s(t) a nondecreasing 
function with infinitely many points of increase), and let ds(t) admit finite mo- 
ments of all orders, 

(2.1) mn= tn ds(t), n = 0, 1, 2, .... 

Let {pn(z)} be the (monic) polynomials orthogonal on [a, b] with respect to ds(t), 

(2.2) fbPn(t)pm(t) ds(t) = O l n# m. 
a 

As is well known, they satisfy a three-term recurrence relation of the form 

(2.3) {P+l(Z) = (z - an)Pn(Z) - b,Pn-.(Z), n = 0, 1, 2, .... 
P-1(z) = 0, pO(z) = 1, 

where an are real, and bn > 0, all n. (bo is arbitrary, but will be set equal to mo.) 
The polynomials 

(2.4) qn(Z) b=PnZ) r t ds(t), n = 0,1, 2,... 

are called the polynomials associated with the orthogonal polynomials Pn. It is 
easily seen (and well known) that they also satisfy the recurrence relation (2.3), at 
least for n > 1. Indeed, by (2.3), 

Pn+ 1(Z) Pn+ l(t) 

= ZPn(Z) - tPn,(t) - an[P(Z) - P(t)] - Pn- l(Z)-[Pn_I(t) ] 

= (z - t)pn (t) + (z - an)[Pn(Z) -pPn(t)] -bn[Pn-I(Z) -Pn-(t)]I 

hence, dividing by z - t and integrating, 

(2.5) {q+l1(Z) b 
Pn(t) 

ds(t) + (z - an)q(z)- b,,q_,(z) n = 0, 1, 2,..., 

q-l(Z) = 0, qo(z) = 0. 

By orthogonality, the integral on the right of (2.5) vanishes if n > 0, and equals mo, 
if n = 0. Consequently, 

(2.6) { q,+ I(Z) = (z - an)qn (Z) - bn qn-(Z), n = 1, 2, 3, .... 

qo(z) = O, q (z) = mo. 
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((2.6) also holds for n = 0, if we redefine q_1(z) = -1 and assume bo = mo.) Since 
po(z) = 1,pI(z) = z - ao, hence the Wronskian of p, qn is equal to mo at n = 0, we 
see that {pn(z)} and { q(z)} are two linearly independent solutions of the recur- 
rence relation (1.1). 

3. Minimal Solutions and the Moment Problem. A solution f, of the recurrence 
relation (1.1) is said to be minimal [7] if there exists a linearly independent solution, 
g, of the same recurrence relation such that 

(3.1) lim fn =O. n -*oo gn 

We show that the existence of a minimal solution is closely related to the 
determinacy of the moment problem for ds(t). 

Let 

(3.2) F(z) 
b 

ds-t) A ZM [ a, b] M 

It is known [18, Satz 4.11 that the integral (3.2) has an "associated continued 
fraction" 

(3.3) F(z)- bo bI b2 . . . (bo = MO) 
z(- aO- z-al- z-a2 - 

where an, bn are the same coefficients as those appearing in the recurrence relation 
(1.1). Furthermore, the nth convergent of the continued fraction in (3.3) is equal to 

qn/pn, where pn, qn are defined in (2.3) and (2.6), respectively, 

(3.4) - n = 1, 2, 3 .... 
Z - ao- z - a,l- z-anI Pn (Z) 

We are interested in the case in which the continued fraction in (3.3) converges to 
the integral F(z), 

(3.5) lim n = F(z), z (p[a, b]( 

If (3.5) holds true, then indeed 

(3.6) fn(z) = F(Z)Pn(Z) - qn(z) 

is a minimal solution of (1.1). This follows at once by observing that (3.5) implies 

37) fn(z) = F(z) - qn(Z) O as n o? 

In view of (2.4) and (3.2), we can writefn in the alternative form 

(3.8) f (z) = Pn(t) d(t) z (4[a, b], n = 0, 1, 2,. 

If we define (see the parenthetic remark after (2.6)) bo = mo, q_.(z) =-1, then fn in 
(3.6) satisfies (1.1) not only for n > 1, but also for n = 0, and we obtain the 
convenient starting value 

(3.9) f1(z)= 1. 
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Any condition which guarantees (3.5) is a sufficient condition for (3.8) to be a 
minimal solution of (1.1). We now recall some such conditions. If the interval [a, b] 
is finite, then (3.5) always holds, by virtue of Markov's theorem [18, Satz 4.2]. If 
[a, b] is a half-infinite interval, say [0, oo], we have (3.5) if the Stieltjes moment 
problem for the moment sequence (2.1) is determined [18, Satz 4.14 and Satz 4.10]. 
A sufficient condition for the latter, due to Carleman, is [20, Theorem 1.111 

00 

E m -1/2n = 00. 

nMn n-I 

Similarly, for the doubly-infinite interval [-oo, oo] (in which case z in (3.5) is 
necessarily complex), the validity of (3.5) is assured if the Hamburger moment 
problem for the moment sequence (2.1) is determined [18, Satz 4.15 and Satz 4.11 1. 
Sufficient conditions for the latter, due to Carleman, are [20, Theorem 1.10 and p. 
59] 

00 00 

m = oo, or a bn-12 = oo 
n=l n-I 

Since, for a finite interval [a, b], the moment problem for (2.1) is always de- 
termined [20, Corollary 1.1], we may summarize by saying that condition (3.5) is 
satisfied, hence fn(z) in (3.8) is a minimal solution of (1.1), whenever the moment 
problem for the moment sequence (2.1) is determined. Most distributions ds(t) that 
arise in practice indeed correspond to a determined moment problem. 

4. Generation of Special Gaussian Quadrature Rules. Let ds(t) be a mass distribu- 
tion, as in Section 2, and assume first that its support is a (finite or infinite) 
subinterval [a, b] of the real line. Let x be real, outside of [a, b], and consider the 
new distribution 

(4.1) do(t)= () a < t < b, xER\[a,b]. 

Given the recurrence relation (2.3) for the orthogonal polynomials {pn} associated 
with ds(t) we are interested in constructing the (monic) orthogonal polynomials 

{(T,} with respect to da(t), and the corresponding Gaussian quadrature rules, all of 
which clearly exists uniquely. 

A good general procedure for accomplishing our task consists in first determin- 
ing the coefficients an, f1n for the desired polynomials, 

(4.2) f,n+l(Z) = (Z - an)rn(Z) - lnn1(z), n = O, 1, 2, ... 
{ S-1(z) = 0, '0o(z) = 1, 

in terms of the coefficients an, bn of the given orthogonal polynomials and in terms 
of the "modified moments" of da(t), 

(4.3) Vn = f p _ t)ds n = 0, 1, 2,... 

and then to compute the eigenvalues and first components of the corresponding 
eigenvectors of the tridiagonal symmetric Jacobi matrix (with elements an, n = 

0, 1, 2, . . . , on the main diagonal, and elements V'n, n = 1, 2, 3 . . . on the 
side diagonals), using the implicit QL algorithm. For details see [8, Section 5], [10], 
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[9]. Although this approach may not be the best possible, in terms of efficiency (for 
more direct methods, see [11], [19]), it has the distinct advantage of numerical 
stability, particularly when the interval [a, b] is finite. Essential for the success of 
this approach, however, is the accurate determination of the modified moments in 
(4.3). These are seen to be identical with f,(x) (or -fg(x), if x < a) in (3.8)-a 
minimal solution of the recurrence relation (1.1), if the moment problem for dy(t) is 
determined. An effective algorithm for the computation of this minimal solution 
will be discussed in Section 5. 

A similar application can be made to weight distributions of the type (cf. also 
[12]) 

(4.4) du(t) a=<td<b(t)E 
(xt )2+ 2 ayt2b, xER, y>O, 

where the support [a, b] of ds(t) may or may not coincide with the whole real line. 
The modified moments, in this case, are given by 

(4.5) = f~~b p,(t) ds(t) 
a (X5t)2+ y2 n = O, 1, 2,. 

They are easily expressed in terms of fn(z) in (3.8). Indeed, letting z = x + iy, and 
observing that 

1 1_ __ _ __ _ 1 _ 1 __ _ 

(X )2 + Y2 2 iy z --t - t } 

one finds immediately 

IMfn(Z) (4.6) v m = _[ 

Thus again, in the case of determinacy, we can generate vn accurately in terms of 
the minimal solution fn(z) of (1.1). 

5. An Algorithm for Calculating the Minimal Solution fn(z). A number of 
algorithms are known for computing minimal solutions of a three-term recurrence 
relation: Miller's backward recurrence algorithm [1, p. xvii], the author's algorithm 
based on continued fractions [7], Olver's algorithm [16], and an economic reformu- 
lation of Olver's algorithm due to Van der Cruyssen [24]. Our experience with these 
algorithms, when applied to some typical minimal solutions fn(z), has been mixed. 
All algorithms, but the author's, have proved prone to overflow, particularly when 
x is moderately close to the half-infinite interval [a, b] = [0, oo] in (4.1), and 
z = x + iy moderately close to [a, b] = [-oo, oo] in (4.4). The algorithms converge 
very slowly in these cases. We have tried to combat overflow in Olver's algorithm 
by rewriting it in terms of appropriate ratios, but were not entirely successful. (An 
alternative way of dealing with the overflow problem, at the expense of approxi- 
mately doubling the work, is to use extended-range arithmetic packages, as in [21], 
[13].) On the other hand, our own algorithm in [7], although not subject to overflow 
conditions, requires good estimates of the starting index (for backward recurrence) 
to remain competitive with the other algorithms. Fortunately, such estimates can be 
derived for the most common distributions di(t) occurring in practice. For this 
reason, in the present context, we tend to prefer the continued fraction algorithm of 
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[7] over the other algorithms mentioned. As "normalizing condition" we use the 
simple condition (3.9), which obviates the need of computingfo(z) separately. 

Suppose, then, that we wish to compute fn(z) for n = 0, 1, 2, . . . , N. Let v > N, 
and let quantities r,() and f,P) be generated according to 

-0 1) |rv) = o, r(P'l = _ b (P) ̂ n = v, v-1, . ..., 1,0 O 
(5.1) ' n-i 

I 
rz-a ) 

lf(1) =1, g) =rOV) J5) n = , 1, 2, ... ., N. 

(Recall that bo = mo.) If fn(z) is a minimal solution of (1.1), then [7, p. 39] 

(5.2) lim An") = fn(z), n = O, 13, 23, ... ., N. 

To implement (5.1), (5.2), one starts with some initial value of the index v and 
keeps increasing v, say by 5, until Ifn"+5) - fn()l < eIf,(v+5)j for all n = 
0, 1, 2, . .. , N, where e is an appropriate (relative) error tolerance. (Alternatively, 
one could apply the convergence test on the r() 1, rather than the fn(,), and thus 
avoid the computation of j,(v) for all but the final value of v.) 

For this algorithm to be effective, it is imperative that realistic estimates be 
available for the initial value of the index v, given N and the error tolerance e. Such 
estimates can be derived from known asymptotic results [6] concerning the be- 
havior of fn(z) and pn(z) for large n. 

To begin with, we recall from [7, (3.18)] that the relative errors can be approxi- 
mated by 

(5.3) En. (g- ) n = O, 1, 2, ... ., N, 

where { gn} is any solution of (1.1) which is linearly independent of the (minimal) 
solution {f f. In view of (3.7), we may choose gn = pn(z), in which case g_1 = 0. 
Since IPn/fnI -? O0 as n -- oo, we have, for N sufficiently large, 

(5.4) max Ie(j) .V+ I fN| 
1<n<N 

n ( 
Po,+ I PN 

The ratios f, +I/p,+I (v > N) and fN/pN in (5.4) can be estimated, at least for some 
common weight distributions ds(t), from the asymptotic formulas forfn/Pn given in 
the Appendix of [6]. 

For the Jacobi distribution ds(t) = (1 - t)a(1 + t)0 dt on [-1, 1], where a > -1, 
f8 > -1, for example, using Eq. (A.1) in [6], one finds for z bounded away from 
[-1, 1] that 

{ 1 }~~~~~~2(v+1 -N) 
(5.5) f/) (z) / PN(Z) z + (Z _ 1)'/2(Z + 1)1/2 ) > N-* oo, 

independently of a and 18. (In evaluating the square roots in (5.5), the principal 
values of arg(z - 1) and arg(z + 1) are to be used.) For the maximum error in (5.4) 
to be less than e, we thus find for v the estimate 

(5.6) V > N + ln(l/e) 
2 lnIz + (z - 1)'1/2(Z + j) 1/21 
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This is applicable to modified moments of the type (4.5), with Jacobi distribution 
dv(t), in which case z = x + iy in (4.6) is complex, with y > 0. The estimate (5.6) 
also applies to (4.3), where z = x is real outside of [-1, 1], and can then be written 
in the simpler form 

(5.6') v > N + ln(I/e) , x ER\[-1, 1]. 
2 ln(lxl+ ) 

The contours in (5.6), i.e., the lines of constant Iz + Vz27IT = p > 1, are 
ellipses with foci at ? 1 and sum of semiaxes equal to p; cf. [4, p. 19]. 

In the case of generalized Laguerre distributions ds(t) = tae' dt on [0, oo], where 
a > 0, we apply Eq. (A.6) in [6] and combine this with the well-known asymptotic 
formulas [15, 9.7.1 and 9.7.2] for modified Bessel functions, to obtain, 

f+ 1(z) / fN(Z) 

P,+I+(z) P N+(Z) 

(5.7) exp{-4[ + a 2 + a 2 ](zew)1/2} 

v > N -oo. 

Here, z is assumed fixed in the complex plane cut along the positive real axis, and 
0 < arg z < 2X. For our maximum error in (5.4) to be less than e, it suffices to 
choose v such that 

> a+ 1 + ln(l/e) 1 _a+ 

(5.8) 2 4\TTo~ 7)J 2' 

0 <rp = arg z < 2-r. 

The contours in (5.8), i.e., the lines of constant VIjF cos 2(-) = V, are 
now parabolas with focus at the origin and vertex at (-p, 0). 

Finally, the case of Hermite distribution ds(t) = e- dt on (-oo, oo) can be 
reduced to the case a = +' of the generalized Laguerre distribution by observing 
that H2,(z) = L,n- 1/2)(Z2), H2n+ l(Z) = zL,'/2)(z2), hence, for z nonreal, 

o e H (t) dt = e(z)f t e't'/ 2Lf-'2) )(t) dt 

00 z t ~~~~~z _*-t 

where + or - holds, depending on whether n is odd or even, and where d"(z) = 1 

for n odd, and A"(z) = z for n even. Proceeding as before, we now find for v the 
estimate 

(5.9) v > 2 + in(pJ' 0 < =argz < 7T. 

The contours in (5.9) are straight lines parallel to the real axis. 
Numerical experience has shown the estimates (5.6), (5.8), (5.9) to be quite 

realistic. In the majority of cases examined, one repetition of the algorithm (5.1) 
(with v incremented by 5) suffices to confirm the desired accuracy. Occasionally, 
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two repetitions are required, and only rarely three (and this only when v is quite 
large). On the other hand, when lowered by 5, the estimates, with few exceptions, 
proved inadequate to achieve the desired accuracy. 
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